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Outline

Three matrix analogs of P2 [Adler & Sokolov, 2021]
I Painlev�e�Kovalevskaya test
I reductions of non-Abelian NLS, mKdV-1 and mKdV-2

Reductions of non-Abelian Volterra lattices [Adler, 2020]
I higher symmetry + scaling → P4

I master-symmetry → P3

I master-symmetry + scaling → P5

Non-Abelian (2+1)-Toda lattice [Adler & Kolesnikov, in preparation]
I 2-periodic reduction and sine-Gordon
I separation of variables: dressing chain + Volterra type lattice
I Maxwell�Bloch system with pumping
I self-similar reductions to P3
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Introduction

Non-Abelian analogs are known for all equations P1�P6, but their
classi�cation is far from complete.

Some obvious di�culties:

for a given scalar equation, several analogs may exist with di�erent
structure of terms;

equations may contain additional parameters, possibly non-Abelian;

lowering of order by integration may be not possible;

a coupled system of two �rst order equations may be not equivalent to a
second order equation.

We demonstrate by several examples that these e�ects are quite common for
non-Abelian Painlev�e equations.
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Three non-Abelian versions of P2

The following equations pass the Painlev�e�Kovalevskaya test:

y′′ = 2y3 + zy + by + yb+ α, P0
2

y′′ = ±[y, y′] + 2y3 + zy + a, P1
2

y′′ = ±2[y, y′] + 2y3 + zy + by + yb+ a, [b, a] = ±2b, P2
2

where y = y(z), a, b ∈ A (free associative algebra or square matrices of any
size) and z, α ∈ C.

P0
2 with b = 0: [Balandin & Sokolov 1998]

P0
2 with b 6= 0: [Retakh & Rubtsov 2010]

P1
2, P

2
2: [Adler & Sokolov 2021] by applying the PK test to the family

y′′ = κ[y, y′] + 2y3 + zy + b1y + yb2 + a, a, b1, b2 ∈ A, κ ∈ C. (1)
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However, we cannot guarantee that the obtained list is exhaustive. For
instance, even the linear term can be generalized in many ways:

zy → zy + b1yc1 + b2yc2 + · · ·+ bnycn, bi, ci ∈ A,

not saying about the terms of higher degrees. It is hardly possible to analyse
all such generalizations. In principle, there may exist some another integrable
case beyond the (1) family.

The PK test becomes much more complicated compared to the scalar case (in
addition to increase of the number of terms, we have to analyse the block
structure of the matrices). Nevertheless, it remains rather e�ective if we
restrict ourselves to some reasonable family of equations.

For instance, a large family of P4 analogs was classi�ed recently by Bobrova
& Sokolov, with even more rich answer than for P2.

Another way to obtain new examples is by group-invariant reductions from
integrable non-Abelian PDEs.
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Remark: the mirror transformation

It is worth noticing that, according to the PK test, the parameter κ in (1) is
quantized, taking the values 0,±1,±2.

On the other hand, there exist a transformation which changes it arbitrarily,
in the case of equations which are invariant under the group

y 7→ cyc−1, c ∈ A

(this means that all parameters should be scalar; we call such equations
GL-invariant).

Proposition [Golubchik & Sokolov 1997]

Let κ ∈ C, κ 6= 0, then the general solutions of GL-invariant equations

y′′ = κ[y, y′] + f(z, y, y′) and ỹ′′ = f(z, ỹ, ỹ′)

are related by the transformation

κy = w′w−1, κỹ = w−1w′.
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Proof:

ỹ = w−1yw, ỹ′ = w−1y′w + [ỹ, w−1w′] = w−1y′w,

ỹ′′ = w−1y′′w + [ỹ′, w−1w′] = w−1f(y, y′, z)w + κ[ỹ′, ỹ]

and we only have to use the GL-invariance property.

Moreover, this transform admits a prolongation to the isomonodromic Lax
pairs. Let the equation for y be equivalent to the compatibility condition

Ψζ = AΨ, Ψ′ = BΨ ⇒ A′ = Bζ + [B,A],

where A and B are rational with respect to y, y′ and z, with scalar
coe�cients. Then the equation for ỹ also has the Lax pair, with

Ψ = wΨ̃, Ã = w−1Aw, B̃ = w−1Bw − w−1w′ = w−1Bw − κỹ.
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For example, the equation

y′′ = κ[y, y′] + 2y3 + zy + α, κ, α ∈ C

admits, for any κ, the Lax pair A′ = Bζ + [B,A] with

B =

(
ζ + κy y
y κy − ζ

)
, A =

(
−4ζ2 + 2y2 + z −4ζy − 2y′ − α/ζ
−4ζy + 2y′ − α/ζ 4ζ2 − 2y2 − z

)
(the scalars ζ, z and α/ζ are understood as multiples of 1 ∈ A).

Thus, the isomonodromic Lax pair does not guarantees the Painlev�e property.

Excercise

How to solve the equation
y′′ = [y′, y]

(which is just y′′ = 0 in the commutative case)? Prove that the general
solution is y = w−1w′, where w′ = (za+ b)w, a, b ∈ A. But, is it possible to
solve this linear equation for w explicitly?
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Self-similar reductions of mKdV-1 and mKdV-2

mKdV-1 [Marchenko 1986]:

ut = uxxx − 3u2ux − 3uxu
2 = (Dx − adu)(uxx + [u, ux]− 2u3)

mKdV-2 [Khalilov & Khruslov 1990]

ut = uxxx + 3[u, uxx]− 6uuxu− 3(ux + u2)c− 3c(ux − u2)

= (Dx + adu)(uxx + 2[u, ux]− 2u3 − 3cu− 3uc), c ∈ A

In mKdV-2, the constant c is related with the Miura map constructed by a
ψ-function corresponding to the non-Abelian value of spectral parameter:

u = ψ−1ψx, ψxx = vψ − ψc.

For mKdV-1, the similar chnage u = ψxψ
−1 is possible only for scalar c.
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Self-similar reduction:

u = ετelog(τ)dy(z)e− log(τ)d, τ = t−1/3, z = ετx,

where 3ε3 = −1 and d ∈ A. For mKdV-2, we additionally assume

c = (ετ)2elog(τ)dc0e
− log(τ)d, 2c0 + [d, c0] = 0, c0 ∈ A

which implies that c remains independent of τ .

Then

mKdV-1 →
( d
dz
− ad y

)
(y′′ − [y, y′]− 2y3 − zy + d) = 0,

mKdV-2 →
( d
dz

+ ad y
)

(y′′ + 2[y, y′]− 2y3 − zy − 3cy − 3yc+ d) = 0.

In contrast to the scalar case, no �rst integrals exist, even for d = c = 0.
However, since these equations are of the form

J ′ = ±[y, J ],

the lowering of order is possible due to the partial �rst integral J = γ ∈ C,
which de�nes an invariant sub-manifold in the solution space.
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Reductions of non-Abelian Volterra lattices

Two integrable non-Abelian versions of the Volterra lattice:

VL1 un,x = un+1un − unun−1 [Wadati 1980; Salle 1982]

VL2 un,x = uTn+1un − unuTn−1 [Adler 2020]

Here T denotes the matrix transpose or a linear map A → A with the
property (ab)T = bTaT.

VL1 and VL2 are related by some implicit transformation similar to the
mirror map between mKdV-1 and mKdV-2.

Instead of self-similar reductions, we obtain Painlev�e-type equations as
stationary equations for non-autonomous symmetries.

The shift n→ n+ 1 provides B�acklund transformations which, in turn
are equivalent to discrete Painlev�e equations.

Non-abelian constants can be introduced by adding classical symmetry
un,τ = [a, un], but, for simplicity, we restrist ourselves with GL-invariant
equations.
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Symmetries and constraints

Like for KdV, there exists an in�nite algebra of �ows:

[∂ti , ∂tj ] = 0, [∂τi , ∂tj ] = j∂tj+i−1
, [∂τi , ∂τj ] = (j − i)∂τj+i−1

, i, j ≥ 1.

We only use symmetries that involve un+k with |k| ≤ 2.

� the lattice itself ∂t1 = ∂x;

� the simplest higher symmetry

VL1 : un,t2 = (un+2un+1 + u2n+1 + un+1un)un

− un(unun−1 + u2n−1 + un−1un−2),

VL2 : un,t2 = (uTn+1un+2 + (uTn+1)2 + unu
T

n+1)un

− un(uTn−1un + (uTn−1)2 + un−2u
T

n−1);

� the classical scaling symmetry

un,τ1 = un;
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� the master-symmetry (nonlocal for VL1, local for VL2)

VL1 : un,τ2 =
(
n+ 3

2

)
un+1un + u2n −

(
n− 3

2

)
unun−1 + [sn, un],

sn − sn−1 = un,

VL2 : un,τ2 =
(
n+ 3

2

)
uTn+1un + u2n −

(
n− 3

2

)
unu

T

n−1.

Any linear combination of derivations

∂t = µ1(x∂t2 + ∂τ2) + µ2(x∂x + ∂τ1) + µ3∂t2 + µ4∂x

commute with ∂x. Therefore, the stationary equation

∂t(un) = 0

is a constraint consistent with the lattice.
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Up to equivalence transformations, there are three di�erent cases which lead
to non-Abelian Painlev�e equations:

2(x∂x + ∂τ1) +∂t2 = 0 → dP1 + P4

x∂t2 + ∂τ2 +µ(x∂x + ∂τ1) +ν∂x = 0 → dP34 + P5

x∂t2 + ∂τ2 +ν∂x = 0 → dP34 + P3

In all cases, we start from some 5-point O∆E

fn(un−2, un−1, un, un+1, un+2;x, µ, ν) = 0.

It admits a reduction of order due to partial �rst integrals; the �nal
result is a 3-point discrete Painlev�e equation

gn(un−1, un, un+1;x, µ, ν, ε, δ) = 0.

with additional constants ε, δ ∈ C.
The x-dynamics is reduced to an ODE system for (un, un+1) which is
equivalent to a continuous Painlev�e equation.
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Scaling reduction: ∂t2 + 2(x∂x + ∂τ1) = 0 → dP1 + P4

VL1 : (un+2un+1 + u2n+1 + un+1un)un − un(unun−1 + u2n−1 + un−1un−2)

+ 2x(un+1un − unun−1) + 2un = 0,

VL2 : (uTn+1un+2 + (uTn+1)2 + unu
T

n+1)un − un(uTn−1un + (uTn−1)2 + un−2u
T

n−1)

+ 2x(uTn+1un − unuTn−1) + 2un = 0.

This can be represented as Fn+1un − unFn−1 = 0.

The equality Fn = 0 is a partial �rst integral, consistent with ∂x due to the
identities

Fn,x = (Fn+1 − Fn)un + un(Fn − Fn−1) for VL1,

Fn,x = (FT

n+1 + Fn)un − un(Fn + FT

n−1) for VL2.

This gives two analogs of dP1:

un+1un + u2n + unun−1 + 2xun + γn = 0, dP1
1

uTn+1un + u2n + unu
T

n−1 + 2xun + γn = 0, dP2
1

where γn := n− ν + (−1)nε.
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The continuous part of dynamics is governed by P4 for y = un:

y′′ =
1

2
y′y−1y′ + [κiy − γy−1, y′]∼∼∼∼∼∼∼∼∼∼∼

+
3

2
y3 + 4xy2 + 2(x2 − α)y − 2γ2y−1, Pi4

where

α = γn−1 −
γn
2

+ 1, γ =
γn
2
, κ1 =

1

2
and κ2 = −3

2
.

� In the scalar case, this reduction was introduced in [Its, Kitaev & Fokas
1990].

� Another non-Abelian version of dP1 was studied in [Cassatella-Contra,
Ma�nas & Tempesta 2012, 2018]:

un+1 + un + un−1 + 2x+ γnu
−1
n = 0.

� More general versions of P4 were found recently by Bobrova & Sokolov.
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Master-symmetry reduction:
x∂t2 + ∂τ2 + µ(x∂x + ∂τ1) + ν∂x = 0 → dP34 + P5 or P3

The �rst step is easy (like in the previous case). It brings to 4-point equations

VL1 : x(un+2un+1 + u2n+1 − u2n − unun−1)− (2µx− n+ ν − 3
2 )un+1

+ (2µx− n+ ν + 1
2 )un − µ+ 2(−1)nε = 0,

VL2 : x
(
uTn+1un+2 + (uTn+1)2 − u2n − unuTn−1

)
− (2µx− n+ ν − 3

2 )uTn+1

+ (2µx− n+ ν + 1
2 )un − µ+ 2(−1)nε = 0,

where ε ∈ C is an integration constant. To obtain Painlev�e equations, we
need additional partial �rst integral.

In the scalar case, the above equation admits the integrating factor
xun+1 + xun + n− ν + 1

2 which brings to dP34:

(zn+1 + zn)(zn + zn−1) = 4x
µz2n + 2(−1)nεzn + δ

zn − n+ ν
, zn := 2xun + n− ν.
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Non-Abelian analogs of dP34 are obtained as partial �rst integrals from the
quasi-determinants of the Lax matrices.

For µ 6= 0:

(zn−1 + zn)(zn + (−1)nσ + ω)−1(zn + zn+1)

= 4µx(zn − n+ ν)−1(zn + (−1)nσ − ω), dP1
34

(zTn−1 + zn)(zn + (−1)n(σ − ω))−1(zn + zTn+1)

= 4µx(zn − n+ ν)−1(zn + (−1)n(σ + ω)) dP2
34

(where σ = ε/µ, ω ∈ C).

For µ = 0:{
(zn+1 + zn)(zn − n+ ν)(zn + zn−1) = 4x(2εzn + δ), n = 2k,

(zn + zn−1)(zn+1 + zn)(zn − n+ ν) = 4x(−2εzn + δ), n = 2k + 1,
dP̃1

34

(zTn+1 + zn)(zn − n+ ν)(zn + zTn−1) = 4x(2(−1)nεzn + δ). dP̃2
34
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These discrete equations are consistent with the �ow ∂x which turns into
ODE systems for (q, p) = (zn, zn + zn+1) or (zn, zn + zTn+1).

Analogs of P5:

dP1
34 →

{
2xqx = p(q − n+ ν)− 4µx(q + α)p−1(q + β),
2xpx = pq + qp+ p− p2 + 4µx(p− 2q − α− β),

P1
5

dP2
34 →

{
2xqx = p(q − n+ ν)− 4µx(q + α)p−1(q + β),
2xpx = 2pq + p− p2 + 4µx(p− 2q − α− β)

P2
5

(in the scalar case, P5 is satis�ed by y = 1− 4µxp−1).

Analogs of P3:

dP̃1
34 →

{
2xqx = p(q − n+ ν)− 4xp−1(2εq + δ),
2xpx = pq + qp+ p− p2 − 8εx,

(even n) P1
3

dP̃2
34 →

{
2xqx = p(q − n+ ν)− 4xp−1(2(−1)nεq + δ),
2xpx = 2pq + p− p2 − 8(−1)nεx

P2
3

(in the scalar case, P3 is satis�ed by y = p/(2ξ), x = ξ2).
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Non-Abelian (2+1)-Toda lattice

Polynomial form [Salle, 1982]

fn,y = pn − pn+1, pn,x = fnpn − pnfn−1, fn, pn ∈ A (2)

Rational form (pn = −gng−1n−1, fn = gn,xg
−1
n ) [Mikhailov, 1981]

(gn,xg
−1
n )y = gn+1g

−1
n − gng−1n−1

Scalar lattice (gn = eun) [Mikhailov, 1979]

un,xy = eun+1−un − eun−un−1

Reductions to Painlev�e equations include two steps:

(2)
constraint // (1+1)-equation

self-similar

reduction
// P3

This gives one more version of P3, slightly di�erent from P1
3, P

2
3 (no

classi�cation results for P3 are known).
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Our plan in more details:

Toda

constraint

�� ��
sinh-Gordon

self-similar reduction

��

Maxwell-Blochoo

�� ��

scalar
case

//

negative
mKdV

real MB with
pumping

P3(α, β, 0, 0) P3(α, β, 0, δ) P3(α, β, γ, δ)

Moreover:

� the map n 7→ n+ 1 de�nes B�acklund transformations for the reduced
equations

� isomonodromic Lax pairs are derived from the auxiliary linear problem
for the Toda lattice
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Non-Abelian sinh-Gordon equation and P3(1,−1, 0, 0)

A simplest constraint consistent with the Toda lattice (2) is

f2n = f, f2n+1 = −f, p2n = p, p2n+1 = p−1

⇓
fy = p− p−1, px = fp+ pf (sinh-G)

(scalar equation: f = ux, p = e2u  uxy = e2u − e−2u).

The self-similar reduction corresponds to the scaling

f → εf, ∂x → ε∂x, ∂y → ε−1∂x.

As usual, we include the conjugation by arbitrary constant a ∈ A:

z = −2xy, p(x, y) = yap(z)y−a, f(x, y) = −2y1+af(z)y−a.
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The result is an analog of P3 with degenerate set of parameters (1,−1, 0, 0):

zf ′ =
1

2
(p− p−1)− f − [a, f ], p′ = fp+ pf.

For scalars, we have f = p′/(2p) and

p′′ =
(p′)2

p
− p′

z
+
p2 − 1

z
,

but we cannot eliminate f in the non-Abelian case. This is possible for
another version [Kawakami, 2016]

zQ′ = 2QPQ+Q, zP ′ = −2PQP − P + 1− zQ−2

(in our notation, it can be transformed to . . . p′ = 2fp).

In this example, the Â�acklund transformation n→ n+ 1 is trivial: f → −f ,
p→ p−1.
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Non-Abelian analog of the Maxwell�Bloch system

fy = p− q, px = fp+ pf − µ, qx = −fq − qf + ν, µ, ν ∈ C (3)

� If µ = ν = 0 then (pq)x = [f, pq], that is, pq = β(y) ∈ C is a partial �rst
integral. We return to sinh-Gordon by setting pq = 1.

� The Maxwell�Bloch system with the pumping parameter c reads

Ey = ρ, ρx = NE, 2Nx = −ρ∗E − ρE∗ + 2c, ρ, E ∈ C, N ∈ R

[Burtsev, Zakharov & Mikhailov, 1987]. For ρ,E ∈ R, we have

Ey = ρ, ρx = NE, Nx = −ρE + c,

which is related with the scalar system (3) by the change

2f = iE, 4p = N + iρ, 4q = N − iρ, c = 4µ = −4ν.

Self-similar reduction for this system is P3 [Winternitz, 1992; Burtsev, 1993;
Schief, 1994].
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� For the scalar system (3), the elimination of p and q gives

ffxxy = fxfxy + 4f3fy + (µ+ ν)fx + 2(ν − µ)f2.

If ν = µ, this equation is consistent with the mKdV ft = fxxx − 6f2fx.

Thus, (3) is a non-Abelian analog of the real MB system, with additional
parameter ν + µ, and of the mKdV `negative' �ow, with additional parameter
ν − µ.

What is the origin of the system (3)?

Theorem. The non-Abelian Toda lattice (2) is consistent with the constraint

fn−1 + fn = µnp
−1
n , µn := εn+ µ0, ε, µ0 ∈ C. (4)

Due to this constraint, f = fn, p = pn and q = pn+1 satisfy (3) with µ = µn
and ν = µn+1 for all n, and the shift n 7→ n+ 1 is equivalent to the B�acklund
transformation

p̃ = q, q̃ = p+ νq−1qyq
−1, f̃ = −f + νq−1, µ̃ = ν, ν̃ = −µ+ 2ν. (5)
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Proof. The system (3) and the map (5) are easily obtained from (2) and (4).
To prove the consistency, we have to check that this map preserves this
system, which is a direct calculation.

Alternatively, we notice that the constraint (4) turns the Toda lattice into a
pair of 1 + 1-dimensional equations: the dressing chain with zero parameters

fn,x + fn+1,x = f2n − f2n+1 (6)

and the non-autonomous Volterra-type lattice

fn,y = µn(fn−1 + fn)−1 − µn+1(fn + fn+1)−1 (7)

In this language, the consistency means that [∂x, ∂y] = 0 which is also veri�ed
directly. �

� Eq. (7) with ε 6= 0 is the master-symmetry for eq. (7) with ε = 0.

� In the scalar case, the consistency of (6) and (7) was observed in
[Garifullin, Habibullin & Yamilov, 2015].
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Zero curvature representation

The Toda lattice is the compatibility condition for the linear equations

ψn,x = ψn+1 + fnψn, ψn,y = pnψn−1

and the constraint (4) corresponds to the three-term recurrence relation

ψn+2 = −(fn + fn+1)ψn+1 + (λ+ εy)ψn.

After some algebra, this brings to the following representations.

Theorem. The system (3) and its BT (5) are equivalent to equations

Uy +
ν − µ

2λ
Uλ = Vx + [V,U ], (8)

Wx = ŨW −WU, Wy +
ν − µ

2λ
Wλ = Ṽ W −WV, (9)

where

U =

(
f λ
λ −f

)
, V =

1

λ

(
µ+ν
2λ p
q 0

)
, W =

(
0 λ
λ −νq−1

)
.
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Self-similar reductions of (3)

The scaling group + conjugation by a ∈ A
⇓

z = xy1/2, f = y1/2−af(z)ya, p = y−1/2−ap(z)ya, q = y−1/2−aq(z)ya

⇓
(zf)′ = 2p− 2q + 2[a, f ],

p′ = fp+ pf − µ,
q′ = −fq − qf + ν.

(10)

The BT for (10):

q̃ = p− νz

2
(fq−1 + q−1f)− ν

2
q−1 +

ν2z

2
q−2 + ν[a, q−1],

p̃ = q, f̃ = −f + νq−1, µ̃ = ν, ν̃ = −µ+ 2ν.
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The representations (8) and (9) give, by standard procedure, the
isomonodromic Lax pair for the system (10) and its BT:

A′ = (ζ2 − ν + µ)Bζ + [B,A],

K ′ = B̃K −KB, (ζ2 − ν + µ)Kζ = ÃK −KA,

where

A =

(
ζzf − 2ζa− µ+ν

ζ + ζκ ζ2z − 2p

ζ2z − 2q −ζzf − 2ζa+ ζκ

)
,

B =

(
f ζ
ζ −f

)
, K =

(
0 ζ
ζ −νq−1

)
,

κ ∈ C is an additional parameter and κ̃ = κ+ 1.

In order to identify the system (10) with P3, we have to lower its order.
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The case ν = µ and P3(α, β, 0, δ)

If ν = µ 6= 0 then (10) admits the invariant submanifold (partial �rst integral)

J(κ) = 2pq − µ(zf − 2a− κ) = 0.

This follows from the identities (easy to check)

J ′ = [f, J ] and J̃(κ̃) = qJ(κ)q−1.

Under the additional constraint J = 0, we have

2q = µp−1(zf − 2a− κ)

and the system (10) takes the form{
(zf)′ = 2p− µp−1(zf − 2a− κ) + 2[a, f ],

p′ = fp+ pf − µ.

In the scalar case, elimination of f gives P3

p′′ =
(p′)2

p
− p′

z
+

1

z
(αp2 + β) + γp3 +

δ

p

with parameters

α = 4, β = µ(4a− 1 + 2κ), γ = 0, δ = −µ2.
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The case ν − µ = ε 6= 0 and P3(α, β, γ, δ)

In this case the invariant submanifold is given by equation

J = 2q − εz + ε(zf + 2a− κ)(2p− εz)−1(zf − 2a+ κ− 2µ/ε− 1) = 0.

It is quite di�cult to see it immediately, but we can make use of the Lax
representation. At the point ζ = ε1/2, the matrix A satis�es the equations
A′ = [B,A] and ÃK = KA and it is easy to prove that its quasi-determinant

|A|12 = a12 − a11a−121 a22

is a partial �rst integral, with respect to the continuous and the discrete
dynamics. The resulting system is

(zf)′ = 2p− εz + 2[a, f ]

+ ε(zf + 2a− κ)(2p− εz)−1(zf − 2a+ κ− 2µ/ε− 1),

p′ = fp+ pf − µ.

In the scalar case, it is equivalent to P3 with a generic set of parameters,
under the change

w =
2p(2p− εz)

zp′ − 2κp+ µz
.
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